Шпаргалки по материаловедению

Перспективы развития их пр. Км – это мат применяемые в машиностроении, для пр-ва деталей машин. Они делятся на металлические и не металлические. 1) сталь – основной км. Мех св-ва – прочность, хор обраб , пластичность, недорогая, около 800 млн в год в России. 2) чугун – 350-400 млн. в России 3) Алюминий – в виде сплавов.

Россия 1 место по пр-ву. 4) Медь – коррозийная стойкость. 5) титановые сплавы – жаростойкие. Речь идёт о: совершенстве технологий, повышение качества металлов, более полное использование мет. ВОПРОС 3. Физические и химические св-ва км.

Физические св-ва : Показыв отношение мат-ов к различным природным явлениям.

Плотность, электропроводность, теплопроводность, термоэлектронная эмиссия.

Химические св-ва : Показ отношение мат-ов к различным хим процессам – коррозии, друг к другу, к сферам. ВОПРОС 4. Механические и технологич св-ва км.

Механические св-ва : показ отношение мат-ов к различным мех воздействиям. По ним рассчитыв конструкции: 1) Прочность; 2) предел текучести; 3) предел пропорциональности; 4) ударная вязкость.

Технологические св-ва : показ отношение мет-ов к различным технологиям обработки. 1) Литейные св-ва – как мат-л относится к литью 2) Ковкость 0 отнош-е м-ов к диф-ям под давлением 3) Свариваемость 4) Обработка резанием 5) отношение к физико-хим методам обработки ВОПРОС 5. Критерии выбора км. 1) Эксплуатационный – учит. В каких усл-ях будет работать данная машина.

Оценивают физ св-ва , хим св-ва , мех св-ва . 2) Технологический – технологичность, как они будут обрабатываться; 3) Экономический – медные сплавы в 8 раз дороже стали, Ni – 25 раз, титан – 80 раз, родий – 45000 раз. ВОПРОС 6. Кр . строение мет и сплав. Все металлы кр тела, состоящие из кр-ов . В каждом отд кр атомы имеют строгое положение и обр пространственную решётку Для мет. хар 3 вида решёток: 1) Объёмно-центрированно кубическая ( Fe , W , молибден). 2) Гране-центрированно кубическая ( Al , Pb , Ni , Au , Ag , Pl ). 3) Гексогонально плотноупакованная (кобальт, кадмий). Св-ва металлов зависят от типа решёток.

Параметры решёток: 1) Период решётки – расстояние между атомами в узлах. 2) Координационное число – кол-во атомов, нах на наим расст от взятого тела. 3) Базис – кол-во атомов приходящ на 1я. Чем больше 2 и 3 тем больше атомов нах в ячейке и это плотноупак реш . Металлы с ОЦК и ГЦК более Тв . ВОПРОС 7. Реальное строение металлов.

Основные деф стр и их влияние на св-ва . Все дефекты делятся на 3 гр. 1) Точечные; 2) Линейные; 3) Плоскостные. ВОПРОС 8. Способы исслед строения и св-в км. 1) Макроанализ – пр-я на изломах и на макротрещинах; 2) микроанализ – анализ м-ов с пом-ю микроскопов.

Имеется шкала сколько мы видим включений и какая бальность , чем больше вкл , тем больше баллов; 3) Электронная микроскопия – исследование тонкой стружки с помощью Эл микроскопа; 4) Рентгеноскопия – лучи попадают на металл, отр-я на пл-ть и улавливаются приборами.. Исследование св-в : 1) Испытание на растяжение и сжатие; 2) Определение Тв . 3) Определение вязкости. ВОПРОС 11. Железо-углеродистые сплавы (стали и чугуны). Компоненты, структурные составляющие. Fe-Fe3C Эти сплавы наз-я «чёрными металлами» и представляют собой стали и чугуны. Сталь – сплав железа с углеродом 0-2,14%. Исходные компоненты Fe - Fe 3 C . 1) Железо – металл, при комнатной т имеет решётку ОЦК, плотность 7,8гр. Тпл=1539, имеет полиморфные превращения. 2) Углерод – не металл, плотность 3,5гр, Тпл=3500, в природе в виде: графит, уголь, алмаз. Может обр сл виды сплавов: 1) Тв раствор; 2) Хим соединения; 3) Может быть в виде отд фаз; 4) Входит в состав мех смесей. СТРУКТУРНЫЕ СОСТАВЛЯЮЩИЕ: 1) Феррит – Тв раствор внедрения углерода в железе альфа. Макс раствор 0,02%- при 727гр. Очень мягкий НВ=80. 2) Аустенит – ТВ. Раствор внедрения углерода в железе гамма, с огр раствор 2,14 при 1147гр., 0,8 при 727гр, НВ=160-180. 3) Цементит – хим.

Соединение железа и углерода, НВ=800. может быть первичный, вторичный, третичный 4) Ледебурит – мех смесь мелкодисперсная 500НВ. 5) Перлит – мех смесь феррита и цементита втор, углерода 08, при 727гр, перлит эвтектоид , НВ=200. ВОПРОС 13. Классификация сталей по структуре и назначению. По структуре: 1) доэвтектоидные (углерод 0-0,8) в этой структуре наход . Феррит и перлит. Чем перлита, сталь прочнее. 2) эвтектоидные (С=0,8). У них в структуре один перлит, стали прочные. 3) заявтектоидные (С 0,8-2,14). У них в структуре нах П и Ц втор, стали очень твёрдые, менее вязки и пластичны. По назначению: 1) строительные (С 0,8-2,14) эти стали достаточно прочные, хорошо прокатываются, свариваются. 2) Машиностроительные (С 0,3-0,8). У них больше перлита, поэтому они более ТВ, чем строительные, хотя сокр вязкость и пластичность. 3) Инструментальные (С от 0,7-1,3). Это высокоуглер стали, очень ТВ., не пластичные. 4) Литейные стали – сплавы идут на стальные отливки. С=0,035. малоуглеродистые стали. ВОПРОС 14. Классификация сталей по способу про-ва и качеству. По способу пр-ва: 1) Кислый способ; 2) Основной способ – нераскислённая сталь кп , спокойная СП, если после марки нет букв, то это спокойная сталь, если не полностью раскислённая , то пс . По качеству: В зависимости от содержания вредных примесей: серы и фосфора-стали подразделяют на: Стали обыкновенного качества , содержание до 0.06% серы и до 0,07% фосфора. Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы: 1. сталь группы А поставляется потребителям по механическим свойствам (такая сталь может иметь повышенное содержание серы или фосфора); 2. сталь группы Б - по химическому составу; 3. сталь группы В - с гарантированными механическими свойствами и химическим составом. 1. Качественные - до 0,035% серы и фосфора каждого отдельно. 2.Высококачественные - до 0.025% серы и фосфора. 3. Особовысококачественные, до 0,025% фосфора и до 0,015% серы. ВОПРОС 15. Классификация чугунов по структуре и виду нахождения углерода.

Чугунами называют сплавы железа с углеродом, содержащие более 2,14% углерода. Они содержат те же примеси, что и сталь, но в большем количестве. В зависимости от состояния углерода в чугуне, различают: Белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида, и чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в виде графита, что определяет прочностные свойства сплава, чугуны подразделяют на: 1) серые - пластинчатая или червеобразная форма графита; 2) высокопрочные - шаровидный графит; 3) ковкие - хлопьевидный графит.

Чугуны маркируют двумя буквами и двумя цифрами, соответствующими минимальному значению временного сопротивления в при растяжении в МПа -10 . Серый чугун обозначают буквами 'СЧ' (ГОСТ 1412-85), высокопрочный - 'ВЧ' (ГОСТ 7293-85), ковкий - 'КЧ' (ГОСТ 1215-85). СЧ10 - серый чугун с пределомпрочности при растяжении 100 МПа; ВЧ70 - высокопрочный чугун с сигма временным при растяжении 700 МПа; КЧ35 - ковкий чугун с в растяжением примерно 350 МПа. Для работы в узлах трения со смазкой применяют отливки из антифрикционного чугуна АЧС-1, АЧС-6, АЧВ-2, АЧК-2 и др., что расшифровывается следующим образом: АЧ - антифрикционный чугун: С - серый, В - высокопрочный, К - ковкий. А цифры обозначают порядковый номер сплава согласно ГОСТу 1585-79. ВОПРОС 16. Легированные стали.

Легирующие элементы.

Маркировка л/с.

Легированные стали широко применяют в тракторном и сельскохозяйственном машиностроении, в автомобильной промышленности, тяжелом и транспортном машиностроении в меньшей степени в станкостроении, инструментальной и других видах промышленности. Это стали применяют для тяжело нагруженных металлоконструкций. Стали, в которых суммарное количество содержание легирующих элементов не превышает 2.5%, относятся к низколегированным, содержащие 2.5-10% - к легированным, и более 10% к высоколегированным (содержание железа более 45%). Наиболее широкое применение в строительстве получили низколегированные стали, а в машиностроении - легированные стали.

Легированные конструкционные стали маркируют цифрами и буквами.

Двухзначные цифры, приводимые в начале марки, указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры обозначают легирующий элемент.

Пример, сталь 12Х2Н4А содержит 0.12% С, 2% Cr , 4% Ni и относится к высококачественным, на что указывает в конце марки буква ІАІ. Строительные низколегированные стали Низко легированными называют стали, содержащие не более 0.22% С и сравнительно небольшое количество недефицитных легирующих элементов: до 1.8% Mn , до 1,2% Si , до 0,8% Cr и другие. К этим сталям относятся стали 09Г2, 09ГС, 17ГС, 10Г2С1, 14Г2, 15ХСНД, 10ХНДП и многие другие. Стали в виде листов, сортового фасонного проката применяют в строительстве и машиностроении для сварных конструкций, в основном без дополнительной термической обработки.

Низколегированные низкоуглеродистые стали хорошо свариваются. Для изготовления труб большого диаметра применяют сталь 17ГС (s0.2=360МПа, sв=520МПа). Для изготовления деталей, упрочняемых цементацией, применяют низкоуглеродистые (0.15-0.25% С) стали.

Содержание легирующих элементов в сталях не должно быть слишком высоким, но должно обеспечить требуемую прокаливаемость поверхностного слоя и сердцевины.

Хромистые стали 15Х, 20Х предназначены для изготовления небольших изделий простой формы, цементируемых на глубину 1.0-1.5мм.

Хромистые стали по сравнению с углеродистыми обладают более высокими прочностными свойствами при некоторой меньшей пластичности в сердцевине и лучшей прочности в цементируемом слое. ВОПРОС 17. Виды и краткая хар-ка ТО сталей. Отжиг сталей.

Существует несколько разновидностей отжига, из них для конструкционных сталей наибольшее применение находит перекристаллизационный отжиг, а для инструментальных сталей - сфероидизирующий отжиг.

Характерный структурный дефект стальных отливок - крупнозернистость . При ускоренном охлаждении крупнозернистого аустенита создаются условия для образования видманштеттовой структуры. При ее образовании выполняется принцип размерного и структурного соответствия, в результате чего кристаллы доэвтектоидного феррита ориентированно прорастают относительно кристаллической решетки аустенита и имеют форму пластин.

Нормализация сталей.

Нормализации, так же как и перекристаллизационному отжигу, чаще всего подвергают конструкционные стали после горячей обработки давлением и фасонного литья.

Нормализация отличается от отжига в основном условиями охлаждения; после нагрева до температуры на 50-70 °С выше температуры Ас3 сталь охлаждают на спокойном воздухе.

Нормализация - более экономичная термическая операция, чем отжиг, так как меньше времени затрачивается на охлаждение стали. Кроме того, нормализация, обеспечивая полную перекристаллизацию структуры, приводит к получению более высокой прочности стали, так как при ускорении охлаждения распад аустенита происходит при более низких температурах. После нормализации углеродистых и низколегированных сталей, так же как и после отжига, образуется ферритно-перлитная структура, однако имеются и существенные структурные отличия . При ускоренном охлаждении, характерном для нормализации, доэвтектоидный феррит при прохождении температурного интервала А r 3 – А r 1 выделяется на границах зерен аустенита; поэтому кристаллы феррита образуют сплошные или разорванные оболочки вокруг зерен аустенита — ферритную сетку.

Закалка сталей. В большинстве случаев при закалке желательно получить структуру наивысшей твердости, т. е. мартенсит, при последующем отпуске которого можно понизить твердость и повысить пластичность стали. При равной твердости структуры, полученные В зависимости от температуры нагрева закалку называют полной и неполной. При полной закалке сталь переводят в однофазное аустенитное состояние, т. е. нагревают выше критических температур.

Доэвтектоидные стали, как правило, подвергают полной закалке, при этом оптимальной температурой нагрева является температура Ас3 + (30— 50 С). Такая температура обеспечивает получение при нагреве мелкозернистого аустенита и, соответственно, после охлаждения - мелкокристаллического мартенсита.

Недогрев до температуры Ас3, приводит к сохранению в структуре кристаллов доэвтектоидного феррита, что при некотором уменьшении прочности обеспечивает повышенную пластичность закаленной стали. / Заэвтектоидные стали подвергают неполной закалке.

Оптимальная температура нагрева углеродистых и низколегированных сталейтемпература Ас1 + (30-50°С). После закалки заэвтсктоидная сталь приобретает структуру, состоящую из мартенсита и цементита Отпуск закаленных сталей.

Нагрев закаленных сталей до температур, не превышающих А1, называют отпуском. В результате закалки чаще всего получают структуру мартенсита с некоторым количеством остаточного аустенита, иногда-структуру сорбита, тростита или бейнита . Рассмотрим изменения структуры мартенситно-аустенитной стали при отпуске. При отпуске происходит несколько процессов . Основной — распад мартенсита, состоящий в выделении углерода в виде карбидов. Кроме того, распадается остаточный аустенит, совершаются карбидное превращение и коагуляция карбидов, уменьшаются несовершенства кристаллического строения Фазовые превращения при отпуске принято разделять на три превращения в зависимости от изменения удельного объема стали.

Распад мартенсита и карбидное превращение вызывают уменьшение объема, а распад аустенита — его увеличение. ВОПРОС 18. Химико-термическая обработка сталей. Это обработка, связанная с нагревом и одновременно насыщением пов-ти др элементами, т.е. нагрев идёт в специальных средах и элемент этих сред вкрапываются в металл. Т.е. в основе ХТО лежит диффузионные процессы.

Диффузия идёт тем полнее, чем выше темп на пов-ти сред, чем больше концентрация диф-го элемента, чем больше длительность пр-са , чем больше давление.

Обычно длительность пр-ва достигает нескольких часов Т=600-1000. глубина слоя нанос-го э-та 0,1мм. Диф Эл-та могут обр-ть твёрдые р-ры , корбиды , нитриды, бориды. 1) Цементация – насыщение углеродом. Чем>С, тем твердее и прочнее сталь. Цем-я позволяет осущить в дальнейшем пов-ую закалку, производиться при 920-950гр.

Газовая цементация в среде, сод-й окиси углерода в прир газе.

Глубина цем-го слоя 1,2мм.

Выдерживается 10-12ч. 2) Азотирование – насыщение азотом. Азот, диф-я в сталь, даёт нитриды железа, а они износостойкие, твёрдые, корозийностойкие . В среде азотсодержащей слой 0,3-0,5мм. 3) Нитроцементация – насыщение углеродом и азотом, при 840-860гр. 4) Оксидирование – насыщение кислородом. Обр-я мелкодисперсные оксиды 600гр толщина до 1мм.

Повышается коррозийная стойкость, износостойкость. 5) Барирование – насыщение бором. Даёт бариды – это очень ТВ. И износостойкие в-ва , поэтому барируются металлические коеструкции . 6) Алитирование – насыщение алюминием, 800гр. Идёт нас-е ал, повыш жаростойкость, ковкость, корозостойкость . ВОПРОС 19. Способы защиты металлов и сплавов от коррозии. 1) Покрытие поверхности лаком, краской, эмалью.

Изолирование металла от внешней среды. 2) создание сплавов с антикоррозийными св-ми . Введением в состав стали до 12% хрома – нержавейка. 3) Протекторная защита и электрозащита.

Сущность такой защиты в том, что конструкцию соединяют с протектором – более активным металлом, чем исходный. 4) Изменение состава среды – замедление коррозии вводят в электролит. ВОПРОС 20. Медные и алюминиевые сплавы, их хар-ка , маркировка, области применения. Медь и её сплавы.

Технически чистая медь обладает высокими пластичностью и коррозийной стойкостью, малым удельным электросопротивлением и высокой теплопроводностью. По чистоте медь подразделяют на марки (ГОСТ 859-78): После обозначения марки указывают способ изготовления меди: к - катодная, б – бес кислородная, р - раскисленная . Медь огневого рафинирования не обозначается. МООк - технически чистая катодная медь, содержащая не менее 99,99% меди и серебра. МЗ - технически чистая медь огневого рафинирования, содержит не менее 99,5%меди и серебра.

Медные сплавы разделяют на бронзы и латуни.

Бронзыэто сплавы меди с оловом (4 - 33% Sn хотя бывают без оловянные бронзы), свинцом (до 30% Pb ), алюминием (5-11% AL ), кремнием (4-5% Si ), сурьмой и фосфором.

Алюминий и его сплавы.

Алюминий - легкий металл, обладающий высокими теплои электропроводностью, стойкий к коррозии. В зависимости от степени частоты первичный алюминий согласно ГОСТ 11069-74 бывает особой (А999), высокой (А995, А95) и технической чистоты (А85, А7Е, АО и др.). Алюминий маркируют буквой А и цифрами, обозначающими доли процента свыше 99,0% Al ; буква 'Е' обозначает повышенное содержание железа и пониженное кремния. А999 - алюминий особой чистоты, в котором содержится не менее 99,999% Al ; А5 - алюминий технической чистоты в котором 99,5% алюминия.

Алюминиевые сплавы разделяют на деформируемые и литейные. Те и другие могут быть не упрочняемые и упрочняемые термической обработкой.

оценка аренды в Твери
оценка грузового автомобиля цена в Орле
оценка товарного знака в Брянске
дипломные работы на заказ, рефераты и авторские курсовые работы

Подобные работы

Шпаргалки по материаловедению

echo "Перспективы развития их пр. Км – это мат применяемые в машиностроении, для пр-ва деталей машин. Они делятся на металлические и не металлические. 1) сталь – основной км. Мех св-ва – прочность, хо

Целлофан

echo "Лакированная целлофановая пленка используется для упаковки кондитерских изделий, табачной продукции, парфюмерной продукции, жирный мясо-молочных продуктов. Обычный целлофановую пленку использую

Материаловедение

echo "Способность электроизоляционных материалов и изделий без вреда для них как кратковременно, так и длительно выдерживать воздействие высоких температур, называют нагревостойкостью. Нагревостойкос