Последовательные порты ПЭВМ. Интерфейс 232С

Характеристики и объемы ввода и вывода в системе определяются, в первую очередь, спецификой ее применения — например, в микропроцессорной системе управления некоторым промышленным процессом не требуется клавиатура и дисплей, так как почти наверняка ее дистанционно программирует и контролирует главный микрокомпьютер (с использованием последовательной линии RS–232C). Поскольку данные обычно представлены на шине микропроцессора в параллельной форме (байтами, словами), их последовательный ввод–вывод оказывается несколько сложным. Для последовательного ввода потребуется средства преобразования последовательных входных данных в параллельные данные, которые можно поместить на шину. С другой стороны, для последовательного вывода необходимы средства преобразования параллельных данных, представленных на шине, в последовательные выходные данные. В первом случае преобразование осуществляется регистром сдвига с последовательным входом и параллельным выходом (SIPO), а во втором — регистром сдвига с параллельным входом и последовательным выходом (PISO). Последовательные данные передаются в синхронном или асинхронном режимах. В синхронном режиме все передачи осуществляются под управлением общего сигнала синхронизации, который должен присутствовать на обоих концах линии связи.

Асинхронная передача подразумевает передачу данных пакетами; каждый пакет содержит необходимую информацию, требующуюся для декодирования содержащихся в нем данных.

Конечно, второй режим сложнее, но у него есть серьезное преимущество: не нужен отдельный сигнал синхронизации.

Существуют специальные микросхемы ввода и вывода, решающие проблемы преобразования, описанные выше. Вот список наиболее типичных сигналов таких микросхем: D0–D7 — входные–выходные линии данных, подключаемые непосредственно к шине процессора; RXD — принимаемые данные (входные последовательные данные); TXD — передаваемые данные (выходные последовательные данные); CTS — сброс передачи. На этой линии периферийное устройство формирует сигнал низкого уровня, когда оно готово воспринимать информацию от процессора; RTS — запрос передачи. На эту линию микропроцессорная система выдает сигнал низкого уровня, когда она намерена передавать данные в периферийное устройство. Все сигналы программируемых микросхем последовательного ввода–вывода ТТЛ–совместимы. Эти сигналы рассчитаны только на очень короткие линии связи. Для последовательной передачи данных на значительные расстояния требуются дополнительные буферы и преобразователи уровней, включаемые между микросхемами последовательного ввода–вывода и линией связи. Общие сведения о интерфейсе RS–232C Интерфейс RS–232C является наиболее широко распространенной стандартной последовательной связью между микрокомпьютерами и периферийными устройствами.

Интерфейс, определенный стандартом Ассоциации электронной промышленности (EIA), подразумевает наличие оборудования двух видов: терминального DTE и связного DCE. Чтобы не составить неправильного представления об интерфейсе RS–232C, необходимо отчетливо понимать различие между этими видами оборудования.

Терминальное оборудование, например микрокомпьютер, может посылать и (или) принимать данные по последовательному интерфейсу. Оно как бы оканчивает (terminate) последовательную линию.

Связное оборудование — устройства, которые могут упростить передачу данных совместно с терминальным оборудованием.

Наглядным пример связного оборудования служит модем (модулятор–демодулятор). Он оказывается соединительным звеном в последовательной цепочке между компьютером и телефонной линией.

Различие между терминальными и связными устройствами довольно расплывчато, поэтому возникают некоторые сложности в понимании того, к какому типу оборудования относится то или иное устройство.

Рассмотрим ситуацию с принтером. К какому оборудованию его отнести? Как связать два компьютера, когда они оба действуют как терминальное оборудование. Для ответа на эти вопросы следует рассмотреть физическое соединение устройств.

Произведя незначительные изменения в линиях интерфейса RS–232C, можно заставить связное оборудование функционировать как терминальное. Чтобы разобраться в том, как это сделать, нужно проанализировать функции сигналов интерфейса RS–232C (таблица 1). Таблица 1. Функции сигнальных линий интерфейса RS–232C.

Номер контакта Сокращение Направление Полное название
1 FG Основная или защитная земля
2 TD (TXD) К DCE Передаваемые данные
3 RD (RXD) К DTE Принимаемые данные
4 RTS К DCE Запрос передачи
5 CTS К DTE Сброс передачи
6 DSR К DTE Готовность модема
7 SG Сигнальная земля
8 DCD К DTE Обнаружение несущей данных
9 К DTE (Положительное контрольное напряжение)
10 К DTE (Отрицательное контрольное напряжение)
11 QM К DTE Режим выравнивания
12 SDCD К DTE Обнаружение несущей вторичных данных
13 SCTS К DTE Вторичный сброс передачи
14 STD К DCE Вторичные передаваемые данные
15 TC К DTE Синхронизация передатчика
16 SRD К DTE Вторичные принимаемые данные
17 RC К DTE Синхронизация приемника
18 DCR К DCE Разделенная синхронизация приемника
19 SRTS К DCE Вторичный запрос передачи
20 DTR К DCE Готовность терминала
21 SQ К DTE Качество сигнала
22 RI К DTE Индикатор звонка
23 К DCE (Селектор скорости данных)
24 TC К DCE Внешняя синхронизация передатчика
25 К DCE (Занятость)
Примечания: 1. 11, 18, 25 обычно считают незаземленными.

Приведенная в таблице спецификация относится к спецификациям Bell 113B и 208A. 2. 9 и 10 используются для контроля отрицательного (MARK) и положительного (SPACE) уровней напряжения. 3. RD (Read — считывать) и RD (Received Data — принимаемые данные) будут использоваться обозначения RXD и TXD, а не RD и TD. Стандартный последовательный порт RS–232C имеет форму 25–контактного разъема типа D (рис 1). Рис. 1. Назначение линий 25–контактного разъема типа D для интерфейса RS–232C Терминальное оборудование обычно оснащено разъемом со штырьками, а связное — разъемом с отверстиями (но могут быть и исключения). Сигналы интерфейса RS–232C подразделяются на следующие классы.

Последовательные данные (например, TXD, RXD). Интерфейс RS–232C обеспечивает два независимых последовательных канала данных: первичный (главный) и вторичный (вспомогательный). Оба канала могут работать в дуплексном режиме, т.е. одновременно осуществляют передачу и прием информации.

Управляющие сигналы квитирования (например, RTS, CTS). Сигналы квитирования — средство, с помощью которого обмен сигналами позволяет DTE начать диалог с DCE до фактической передачи или приема данных по последовательной линии связи.

Сигналы синхронизации (например, TC, RC). В синхронном режиме (в отличие от более распространенного асинхронного) между устройствами необходимо передавать сигналы синхронизации, которые упрощают синхронизм принимаемого сигнала в целях его декодирования. На практике вспомогательный канал RS–232C применяется редко, и в асинхронном режиме вместо 25 линий используются 9 линий (таблица 2). Таблица 2. Основные линии интерфейса RS–232C.

Номер контакта Сигнал Выполняемая функция
1 FG Подключение земли к стойке или шасси оборудования
2 TXD Последовательные данные, передаваемые от DTE к DCE
3 RXD Последовательные данные, принимаемые DTE от DCE
4 RTS Требование DTE послать данные к DCE
5 CTS Готовность DCE принимать данные от DTE
6 DSR Сообщение DCE о том, что связь установлена
7 SG Возвратный тракт общего сигнала (земли)
8 DCD DTE работает и DCE может подключится к каналу связи
Виды сигналов В большинстве схем, содержащих интерфейс RS–232C, данные передаются асинхронно, т.е. в виде последовательности пакета данных.

Каждый пакет содержит один символ кода ASCII, причем информация в пакете достаточна для его декодирования без отдельного сигнала синхронизации.

Символы кода ASCII представляются семью битами, например буква А имеет код 1000001. Чтобы передать букву А по интерфейсу RS–232C, необходимо ввести дополнительные биты, обозначающие начало и конец пакета. Кроме того, желательно добавить лишний бит для простого контроля ошибок по паритету (четности). Наиболее широко распространен формат, включающий в себя один стартовый бит, один бит паритета и два стоповых бита.

Начало пакета данных всегда отмечает низкий уровень стартового бита. После него следует 7 бит данных символа кода ASCII. Бит четности содержит 1 или 0 так, чтобы общее число единиц в 8–битной группе было нечетным.

Последним передаются два стоповых бита, представленных высоким уровнем напряжения.

Эквивалентный ТТЛ–сигнал при передаче буквы А показан на рис. 2. Рис. 2. Представление кода буквы А сигнальными уровнями ТТЛ. Таким образом, полное асинхронно передаваемое слово состоит из 11 бит (фактически данные содержат только 7 бит) и записывается в виде 01000001011. Используемые в интерфейсе RS–232C уровни сигналов отличаются от уровней сигналов, действующих в компьютере.

Логический 0 (SPACE) представляется положительным напряжением в диапазоне от +3 до +25 В, логическая 1 (MARK) — отрицательным напряжением в диапазоне от –3 до –25 В. На рис. 3 показан сигнал в том виде, в каком он существует на линиях TXD и RXD интерфейса RS–232C. Рис. 3. Вид кода буквы А на сигнальных линиях TXD и RXD. Сдвиг уровня, т.е. преобразование ТТЛ–уровней в уровни интерфейса RS–232C и наоборот производится специальными микросхемами драйвера линии и приемника линии. На рис. 4 представлен типичный микрокомпьютерный интерфейс RS–232C. Программируемая микросхема DD1 последовательного ввода осуществляет параллельно–последовательные и последовательно–параллельные преобразования данных.

Микросхемы DD2 и DD3 производят сдвиг уровней для трех выходных сигналов TXD, RTS, DTR, а микросхема DD4 — для трех входных сигналов RXD, CTS, DSR. Микросхемы DD2 и DD3 требуют напряжения питания ±12 В. Рис. 4. Типичная схема интерфейса RS–232C. Усовершенствования Разработано несколько новых стандартов, направленных на устранение недостатков первоначальных спецификаций интерфейса RS–232C. Среди них можно отметить интерфейс RS–422 (балансная система, допускающая импеданс линии до 50 Ом), RS–423 (небалансная система с минимальным импедансом линии 450 Ом) и RS–449 (стандарт с высокой скоростью передачи данных, в котором несколько изменены функции схем и применяется 37–контактный разъем типа D). Тестовое оборудование для интерфейса RS–232C Соединители. Эти дешевые устройства упрощают перекрестные соединения сигнальных линий интерфейса RS–232C. Они обычно оснащаются двумя разъемами типа D (или ленточными кабелями, имеющими розетку и вставку), и все линии проводятся к той области, куда можно вставить перемычки. Такие устройства включаются последовательно с линиями интерфейса RS–232C, и затем проверяются различные комбинации подключений.

Трансформаторы разъема.

Обычно эти приспособления имеют разъем RS–232C со штырьками на одной стороне и разъем с отверстиями на другой стороне.

Пустые модемы. Как и предыдущие устройства, пустые модемы включаются последовательно в тракт данных интерфейса RS–232C. Их функции заключаются в изменении сигнальных линий таким образом, чтобы превратить DTE в DCE. Линейные мониторы.

Мониторы индицируют логические состояния (в терминах MARK и SPACE) наиболее распространенных сигнальных линий данных и квитирования. С их помощью пользователь получает информацию о том, какие сигналы в системе присутствуют и активны.

Врезки. Эти устройства обеспечивают доступ к сигнальным линиям. В них, как правило, совмещены возможности соединителей и линейных мониторов и, кроме того, предусмотрены переключатели или перемычки для соединения линий с обоих сторон устройства.

Оценка ресторана услуги в Орле
оценка стоимости гостиницы в Брянске
экспертиза ущерба квартиры в Смоленске
дипломные работы на заказ, рефераты и авторские курсовые работы

Подобные работы

Многопроцессорный вычислительный комплекс на основе коммутационной матрицы с симметричной обработкой заданий всеми процессорами

echo "Описать организацию резервирования и восстановления вычислительного процесса при отказе любого компонента многопроцессорного вычислительного комплекса. 1.3 Введение Разработка многопроцессорных

Локальная шина персонального компьютера

echo "Калифорния) предложили проекты спецификаций локальных шин, решающих задачу увеличения производительности персональных компьютеров за счет совершенствования подсистемы ввода-вывода данных. Компа

Модемы, модемные стандарты, принцип работы

echo "Модемы все усиливают и усиливают свои функции, модемы уже даже посылают и принимают факсы, как знать, что ждет их в будущем. Рынок модемов расширяется. Одно поколение модемов сменяет другое, ско

Плоттеры

echo "Пищущие элементы бывают одноразовые и многоразовые (допускающие перезарядку). Перо крепится в держателе пищущего узла, который имеет одну или две степени свободы перемещения. Существует два тип

Локальные вычислительные сети на базе IBM PC AT совместимых ПЭВМ

echo "Зачастую возникает необходимость в разработке принципиального решения вопроса по организации ИВС (информационно–вычислительной сети) на базе уже существующего компьютерного парка и программного

Передача информации из ультразвуковой медицинской диагностической установки ALOCA SSD650

echo "Система прошла опытную эксплуатацию в институте хирургии им А. В. Вишневского в рамках проекта «телемедицина». Отчетные материалы к дипломному проекту включают пояснительную записку, 3 приложени

Оперативная память

echo "Именно из нее процессор берет программы и исходные данные для обработки, в нее он записывает полученные результаты. Название «оперативная» эта память получила потому, что она работает очень быс

Магнитные носители информации. Запись информации на магнитные носители

echo "Которая использова-лась в качестве носителя различных звуковых данных — на неё записывали различ-ные музыкальные мелодии, речь человека, песни. "; echo ''; echo " Сама технология записи на