Внимание! center-referat.ru не продает дипломы, аттестаты об образовании и иные документы об образовании. Все услуги на сайте предоставляются исключительно в рамках законодательства.

Готовые дипломные, курсовые, рефераты. Вы можете бес-платно скачать любую понравившуюся работу.

Реферат - Метод конечных разностей или метод сеток. Решение бигармонического уравнения методом Зейделя

Поэтому эти задачи решают в основном приближённо. Одним из наиболее универсальных и эффективных методов, получивших в настоящее время широкое распространение для приближённого решения уравнений математической физики, является метод конечных разностей или метод сеток. Суть метода состоит в следующем.

Область непрерывного изменения аргументов, заменяется дискретным множеством точек (узлов), которое называется сеткой или решёткой.

Вместо функции непрерывного аргумента рассматриваются функции дискретного аргумента, определённые в узлах сетки и называемые сеточными функциями.

Производные, входящие в дифференциальное уравнение и граничные условия, заменяются разностными производными, при этом краевая задача для дифференциального уравнения заменяется системой линейных или нелинейных алгебраических уравнений (сеточных или разностных уравнений). Такие системы часто называют разностными схемами. И эти схемы решаются относительно неизвестной сеточной функции. Далее мы будем рассматривать применение итерационного метода Зейделя для вычисления неизвестной сеточной функции в краевой задаче с неоднородным бигармоническим уравнением. ПОСТАНОВКА ЗАДАЧИ Пусть у нас есть бигармоническое уравнение : 2 U = f Заданное на области G={ (x,y) : 0 U = 0 Y x=0 b Uxxx = 0 x=0 G Ux = 0 x=a Uxxx = 0 0 a X x=a U = 0 U = 0 y=0 y=b Uy = 0 Uxx + Uyy = 0 y=0 y=b y=b Надо решить эту задачу численно. Для решения будем использовать итерационный метод Зейделя для решения сеточных задач. По нашей области G построим равномерные сетки Wx и Wy с шагами hx и hy соответственно . Wx={ x(i)=ihx, i=0,1...N, hxN=a } Wy={ y(j)=jhy, j=0,1...M, hyM=b } Множество узлов Uij=(x(i),y(j)) имеющих координаты на плоскости х(i),y(j) называется сеткой в прямоугольнике G и обозначается :

W={ Uij=(ihx,jhy), i=0,1...N, j=0,1...M, hxN=a, hyM=b }
Сетка W очевидно состоит из точек пересечения прямых x=x(i) и y=y(j). Пусть задана сетка W.Множество всех сеточных функций заданных на W образует векторное пространство с определённом на нём сложениемфункций и умножением функции на число. На пространстве сеточных функций можно определитьразностные или сеточные операторы. 0ператор A преобразующий сеточную функцию U в сеточную функцию f=AU называется разностным или сеточным оператором.

Множество узлов сетки используемое при написании разностного оператора в узле сетки называется шаблоном этого оператора.

Простейшим разностным оператором является оператор дифференцирования сеточной функции, который порождает разностные производные. Пусть W - сетка с шагом h введённая на R т.е. W={Xi=a+ih, i=0, + 1, + 2...} Тогда разностные производные первого порядка для сеточной функции Yi=Y(Xi) , Xi из W, определяется по формулам : L1Yi = Yi - Yi-1 , L2Yi=L1Yi+1 h и называются соответственно левой и правой производной.

Используется так же центральная производная : L3Yi=Yi+1 - Yi-1 = (L1+L2)Yi 2h 2 Разностные операторы A1, A2, A3 имеют шаблоны состоящие 2х точек и используются при апроксимации первой производной Lu=u’ . Разностные производные n-ого порядка определяются как сеточные функции получаемые путём вычисления первой разностной производной от функции, являющейся разностной производной n-1 порядка, например : Yxxi=Yxi+1 - Yxi = Yi-1-2Yi+Yi+1 2 h h Yxxi= Yxi+1-Yxi-1 = Yi-2 - 2Yi+Yi+ 2 2 2h 4h которые используются при апроксимации второй производной.

Соответствующие разностные операторы имеют 3х точечный шаблон.

Анологично не представляет труда определить разностные производные от сеточных функций нескольких переменных.

Аппроксомируем нашу задачу с помощью разностных производных. И применим к получившейся сеточной задаче метод Зейделя. МЕТОД ЗЕЙДЕЛЯ Одним из способов решения сеточных уравнений является итерационный метод Зейделя. Пусть нам дана система линейных уравнений : AU = f или в развёрнутом виде : M aijUj = fi , i=1,2...M i=1 Итерационный метод Зейделя в предположении что диагональные элементы матрицы А=(aij) отличны от нуля (aii<>0) записывается в следующем виде : i (k+1) M (k) aijYj + aijYj = fi , i=1,2...M j=1 j=i+1 (k) где Yj - jая компонента итерационного приближения номера k. В качестве начального приближения выбирается произвольный вектор.

Определение (k+1)-ой итерации начинается с i=1 (k+1) M (k) a11Y1 = - a1jYj +f1 j=2 (k+1) Так как a11<>0 то отсюда найдём Y1. И для i=2 получим : (k+1) (k+1) M (k) a22Y2 = - a21Y1 - a2jYj + f2 j=3 (k+1) (k+1) (k+1) (k+1) Пусть уже найдены Y1 , Y2 ... Yi-1 . Тогда Yi находится из уравнения : (k+1) i-1 (k+1) M (k) aiiYi = - aijYj - aijYj + fi (*) j=1 j=i+1 Из формулы (*) видно , что алгоритм метода Зейделя черезвычайно прост.

Найденное по формуле (*) значение Yi размещается на месте Yi. Оценим число арифметических действий, которое требуется для реализации одного итерационного шага. Если все aij не равны нулю, то вычисления по формуле (*) требуют M-1 операций умножения и одного деления.

Поэтому реализация 2 одного шага осуществляется за 2M - M арифметических действий. Если отлично от нуля лишь m элементов, а именно эта ситуация имеет место для сеточных эллиптических уравнений, то на реализацию итерационного шага потребуется 2Mm-M действий т.е. число действий пропорционально числу неизвестных M. Запишем теперь метод Зейделя в матричной форме. Для этого представим матрицу A в виде суммы диагональной, нижней треугольной и верхней треугольной матриц : A = D + L + U где

0 0 . . . 0 0 a12 a13 . . . a1M a21 0 0 0 a23 . . . a2M a31 a32 0 0 . L = . U= . . . . aM-1M aM1 aM2 . . . aMM-1 0 0 0 И матрица D - диагональная. (k) (k) (k) Обозначим через Yk = ( Y1 ,Y2 ... YM ) вектор k-ого итерационного шага.

Пользуясь этими обозначениями запишем метод Зейделя иначе : ( D + L )Yk+1 + UYk = f , k=0,1... Приведём эту итерационную схему к каноническому виду двухслойных схем : ( D + L )(Yk+1 - Yk) +AYk = f , k=0,1... Мы рассмотрели так называемый точечный или скалярный метод Зейделя, анологично строится блочный или векторный метод Зейделя для случая когда aii - есть квадратные матрицы, вообще говоря, различной размерности, а aij для i<>j - прямоугольные матрицы. В этом случае Yi и fi есть векторы, размерность которых соответствует размерности матрицы aii. ПОСТРОЕНИЕ РАЗНОСТНЫХ СХЕМ Пусть Yi=Y(i) сеточная функция дискретного аргумента i. Значения сеточной функции Y(i) в свою очередь образуют дискретное множество. На этом множестве можно определять сеточную функцию, приравнивая которую к нулю получаем уравнение относительно сеточной функции Y(i) - сеточное уравнение.

Специальным случаем сеточного уравнения является разностное уравнение.

Сеточное уравнение получается при аппроксимации на сетке интегральных и дифференциальных уравнений. Так дифференциальное уравнение первого порядка : dU = f(x) , x > 0 dx можно заменить разностным уравнением первого порядка : Yi+1 - Yi = f(xi) , xi = ih, i=0,1... h или Yi+1=Yi+hf(x), где h - шаг сетки v={xi=ih, i=0,1,2...}. Искомой функцией является сеточная функция Yi=Y(i). При разностной аппроксимации уравнения второго поряда 2 d U = f(x) 2 dx получим разностное уравнение второго порядка : 2 Yi+1 - 2Yi + Yi+1 = yi , где yi=h f i fi = f(xi) xi = ih Для разностной aппроксимации производных U’, U’’, U’’’ можно пользоваться шаблонами с большим числом узлов. Это приводит к разностным уравнениям более высокого порядка.

Анологично определяется разностное уравнение относительно сеточной функции Uij = U(i,j) двух дискретных аргументов . Например пятиточечная разностная схема “крест” для уравнения Пуассона Uxx + Uyy = f(x,y) на сетке W выглядит следующим образом : Ui-1j - 2Uij+Ui+1j + Uij-1 - 2Uij+Uij+1 = fij 2 2 hx hy где hx - шаг сетки по X hy - шаг сетки по Y Сеточное уравнение общего вида можно записать так: N CijUj = fi i=0,1...N j=0 Оно содержит все значения U0, U1 ... UN сеточной функции. Его можно трактовать как рзностное уравнение порядка N равного числу узлов сетки минус единица. В общем случае под i - можно понимать не только индекс , но и мультииндекс т.е. вектор i = (i1 ... ip) с целочисленными компонентами и тогда : СijUj =fi i W j W где сумирование происходит по всем узлам сетки W. Если коэффициенты Сij не зависят от i, тоуравнение называют уравнением с постоянными коэффициентами.

Скачать работу. Метод конечных разностей или метод сеток. Решение бигармонического уравнения методом Зейделя

Авторские права 2002-2020 center-referat.ru